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Abstract. Safety is a critical concern for the next generation of auton-
omy that is likely to rely heavily on deep neural networks for perception
and control. This paper proposes a method to repair unsafe ReLU DNNs
in safety-critical systems using reachability analysis. Our repair method
uses reachability analysis to calculate the unsafe reachable domain of a
DNN, and then uses a novel loss function to construct its distance to
the safe domain during the retraining process. Since subtle changes of
the DNN parameters can cause unexpected performance degradation,
we also present a minimal repair approach where the DNN deviation is
minimized. Furthermore, we explore applications of our method to repair
DNN agents in deep reinforcement learning (DRL) with seamless inte-
gration with learning algorithms. Our method is evaluated on the ACAS
Xu benchmark and a rocket lander system against the state-of-the-art
method ART. Experimental results show that our repair approach can
generate provably safe DNNs on multiple safety specifications with neg-
ligible performance degradation, even in the absence of training data.4.

Keywords: Neural network repair · reachability analysis.

1 Introduction

Although deep neural networks (DNNs) have been successful in many areas, their
trustworthiness remains a primary issue preventing widespread use. Recently,
many techniques for analyzing behaviors of DNNs have been presented [9, 6, 14,
19]. Given a DNN, these works present post-training verification methods that
generate a safety certificate over input-output specifications. One challenge that
remains is the repair problem, where given a DNN with erroneous behaviors, an
automatic process repairs the network with respect to the specification.

Existing works that improve the safety and robustness of DNNs can be clas-
sified into two main categories. The first category relies on singular adversarial
inputs to make specialized modifications on neural weights that likely cause mis-
behavior. In [13], the paper presents a technique named Arachne. There, given a

4 Code is available online at https://github.com/Shaddadi/veritex.git
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set of finite adversarial inputs, with the guidance of a fitness function, Arachne
searches and subsequently modifies neural weights that are likely related to these
undesired behaviors. In [2], the paper proposes a DNN verification-based method
that modifies undesirable behavior of DNNs by manipulating neural weights of
the output layer. The correctness of the repaired DNN is then proved with a
verification technique. In [15], the repair approach first localizes the potential
faulty DNN parameter at an intermediate layer or the last layer, and then con-
ducts a small modification using constraint solving. In [11], the method poses the
repair problem as a mixed-integer quadratic program to adjust the parameter
of a single layer, such that undesired behaviors can be reduced and meanwhile
the change in DNNs is minimized. However, these methods only enhance the
robustness of DNNs, meaning that provably safe DNNs cannot be generated. In
addition, the modification of weights based on individual adversarial examples
may not capture the impact on the whole performance of the network.

The second category is based on adversarial training, such as [3, 10]. However,
these methods do not provide guarantees regarding the safety of the DNN. To
solve this issue, some works incorporate reachability analysis in this process,
such that they can train a model that is provably safe on a norm-bounded
domain [17, 12, 8]. Given a norm-bounded input range, these approaches over
approximate the output reachable domain of DNNs with a convex region. Then
they minimize the worst-case loss over these regions, which aims to migrate all
unsafe outputs to the desired domain. The primary issue of these approaches is
that the approximation error accumulates during computation. For large input
domains or complex DNNs, their approximated domain can be so conservative
that a low-fidelity worst-case loss may result in significant accuracy degradation.
We confirm this issue through experiments in comparison with ART [8].

In this paper, we propose a repair method for ReLU DNNs based on exact
reachability analysis. Compared to over-approximation approaches, the exact
analysis enables us to precisely compute the unsafe reachable domain of a DNN
and its distance to the safe domain. In the repair process, this distance is con-
structed with a loss function for minimization. Additionally, by combining it with
another objective function that minimizes the change of the DNN parameters, a
minimal-repaired DNN can be learned, which aims to preserve the performance.
Experiments indicate that our method can successfully repair unsafe DNNs on
multiple safety specifications with negligible impact on performance.

2 Deep Neural Network Repair

This section provides definitions and problem statements for DNN repair, and a
brief overview of reachability analysis for DNNs. The problem is also extended
to repair DNN agents in deep reinforcement learning.

2.1 Provably Safe DNNs

Let fθ : X → Y where X ⊆ R|x| and Y ⊆ R|y| denote the input and output space
of a DNN with the parameter set θ, where given an input x ∈ X , it produces an
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output y = fθ(x) ∈ Y. The safety problem of DNNs with reachability analysis
on safety properties is formally defined as follows.

Definition 1 (Safety Property). A safety property P of a DNN fθ specifies
a bounded input domain I ⊆ X and a corresponding undesired output domain
U ⊆ Y. The domain I refers to an interval with the lower bound x and the
upper bound x. The domain U refers to either a convex domain Ay+ b ≤ 0 or a
non-convex domain consisting of multiple such convex domains.

Definition 2 (DNN Reachable Domain). Given an input domain I ⊆ X to
a DNN fθ, its output reachable domain will be a subspace O ⊆ Y where ∀x ∈ I,
its output y = fθ(x) and y ∈ O. The domain O is exact if it only contains
the output of x ∈ I. Otherwise, it is over approximated. It is formulated as
O = N(I).
Definition 3 (DNN Safety Verification). A DNN fθ is safe on a safety
property P that specifies an input domain I and an output unsafe domain U , or
fθ |= P, if the exact output reachable domain O = N(I) satisfies that O∩U = ∅.
Otherwise, it is unsafe, or fθ ̸|= P.

Given a set of safety properties {P}ni=1 and a candidate DNN fθ, we define
the DNN Repair problem as the problem of repairing the DNN to generate a
new DNN f ′

θ such that all the properties are satisfied, as defined in Problem 1.
While repairing DNNs, it is also extremely important to preserve the parameter
θ of the candidate DNN to the most extent because a subtle deviation on the
parameter can lead to a high impact on the original performance and even in-
troduce unexpected unsafe behaviors. These changes can be difficult to identify
due to the black-box nature of DNNs. Therefore, our work also considers the
minimal repair, which is formally defined in Problem 2.

Problem 1 (DNN Repair). Given a DNN candidate fθ and a set of safety prop-
erties {P}ni=1, at least one of which is violated, the repair problem is to train a
new parameter set θ′ based on θ, such that fθ′ satisfies all the safety properties,
fθ′ |= {P}ni=1.

Problem 2 (Minimal DNN Repair). Given a DNN candidate fθ and a set of
safety properties {P}ni=1, at least one of which is violated, the minimal repair
problem is to train a new parameter set θ′ based on θ, such that fθ′ satisfies all
the safety properties, fθ′ |= {P}ni=1 while minimizing the L-distance ∥θ′ − θ∥L.

For DNN classifier, we use classification accuracy on finite test data to an-
alyze the performance of a repaired DNN fθ′ with respect to its original DNN
fθ. While for DNN regressor, we use the prediction error on test data. The
parameter deviation ∥θ′ − θ∥L is used to evaluate the DNN change caused by
the repair. Additionally, we also analyze the impact of the DNN deviation on
the reachability of a DNN. Here, reachability indicates the reachable domain on
safety properties. As reachability characterizes the behaviors of a DNN, a desired
repair method should preserve its reachability. In the repair of DNN agents in
DRL, the DNN performance is set to the averaged rewards on a certain number
of episode tests.
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2.2 DNN Agent Repair for Deep Reinforcement Learning

In Deep Reinforcement Learning (DRL), an agent is replaced with a DNN con-
troller. The inputs to the DNN are states or observations, and their outputs
correspond to agent actions. Similarly, a property P for the DNN agent defines
a scenario where it specifies an input state space I containing all possible in-
puts, and also a domain U of undesired output actions. Different from regular
DNN learning that uses existing training data, DRL learns through trial and er-
ror from their own experience collected from interactions with the environment.
How to utilize the unsafe state domain computed with the reachability analy-
sis to repair unsafe behaviors of the agent remains a problem. This problem is
formally defined as follows:

Problem 3 (DNN Agent Repair). Given a DNN agent candidate fθ and a set of
safety properties {P}ni=1, at least one of which is violated. The repair problem is
to learn a DNN f ′

θ through trial and error from the experience in the interactive
environment, such that f ′

θ |= {P}ni=1 while maximizing the reward.

2.3 Computation of Exact Unsafe Domain of ReLU DNNs

The exact unsafe reachable domain of a DNN is defined with respect to input-
output safety properties. This domain is computed not only for safety verification
but also for retraining purposes. The problem of computing the unsafe domain
is known to be an NP-complete problem [5]. In this paper, the computation of
the unsafe domain is based on [18]. In the following, we provide a brief overview
of the algorithm.

Given a DNN fθ and a safety property P that specifies an input domain I
and an unsafe output domain U , the reachability analysis algorithm computes a
set of output reachable sets Sk, the union of which is the exact output reachable
domain O=

⋃m
k=1 Sk. Here, a set Sk refers to a convex set. The computation is

denoted asO=N(I). This process is illustrated in Fig. 1. For each Sk, we compute

its overlap S [k]
u with the specified unsafe output domain U , and then apply a

backtracking algorithm to compute its corresponding unsafe input subspace E [k]
u

which is also a convex set. The union of S [k]
u is the exact unsafe output reachable

domain Ou=
⋃m

k=1 S
[k]
u and the union of E [k]

u is the exact unsafe input space

Iu=
⋃m

k=1 E
[k]
u . The backtracking process is denoted as Iu=B(Ou) in Fig. 1.

In the reachability analysis method described above, the set representation
for Eu and Su includes their vertices. These vertices of all Eus and Sus distribute
over the entire unsafe input domain Iu and unsafe output reachable domain
Ou, respectively. In addition, Eu is actually a subset of a linear region of the
DNN and the linear region is a maximal convex subset of the input domain to
the DNN, over which the DNN is linear. Therefore, Su and Eu have an affine
mapping relation, and so do their vertices. Overall, these vertices can be utilized
to approximate the distance between unsafe domains and safe domains in Equ. 3
for the repair process.
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Fig. 1: Computation of the unsafe input-output reachable domain Iu ×Ou.

3 Framework for DNN Repair

3.1 Formulation of Loss Function for Problems 1 & 2

We treat Problem 1 for DNN repair as a single-objective optimization problem
where we seek to minimize the distance between the reachable unsafe domain
and the known safe domain. For Problem 2, which defines the minimal DNN
repair problem, we would also like to minimize the change in DNN parameters
such that the repaired network does not falsify the specifications and its behavior
is as close as possible to the original network.

Loss Function for DNN Repair We define a distance between the unsafe
domain and the safe domain through the parameter set θ. By minimizing this
distance, the unsafe domain can be gradually eliminated. The loss function can
be formulated as:

Lu(θ) =

n∑
i=1

dist(Ou(I [i],U [i], θ),U [i]) (1)

where I [i] and U [i] are the input domain and output unsafe domain specified by
the property Pi, the function dist computes the distance between the identified
unsafe reachable domain Ou and the safe domain U . This distance is designed
to be the minimum distance of each y ∈ Ou to the safe domain U , such that the
modification of unsafe behaviors can be minimal. This minimum l-norm distance
of y ∈ Ou to the safe domain can be formulated as minŷ∈U ∥y(x, θ)− ŷ∥l.

The common strategy of related works which aim to repair or improve the
safety of DNNs with reachability analysis [17, 12, 8] is by considering the largest
distance which is formulated as

dist : max
y∈Ou

min
ŷ∈U

∥y(x, θ)− ŷ∥l. (2)

However, the issues are twofold with this approach. First, it is unknown whether
the unsafe domain Ou is convex or concave, which makes it significantly challeng-
ing to convert the computation of the exact largest distance to an LP problem.
Secondly, Their solutions are based on the over-approximation of the output
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unsafe reachable domain by linearization of nonlinear activation functions. As
a result, the approximation error is accumulated with neurons and it can be
so conservative that a low-fidelity approximated distance may result in signif-
icant accuracy degradation. This remark is demonstrated in our experimental
evaluation and comparison with the related work ART [8].

Different from these strategies, our reachability analysis method can obtain
the exact unsafe reachable domain Ou efficiently. As introduced in Sec. 2.3,
this is achieved by computing the exact unsafe linear regions {Eu}mk=1 and their

output reachable domains {Su}mk=1, where S
[k]
u =N(E [k]

u ) and Ou=
⋃m

k=1 S
[k]
u . The

vertices of each pair of domains E [k]
u × S [k]

u can be denoted as Vk : x × y. The
y ∈ Ou having the largest distance in Equ. 2 is also included in

⋃m
k=1 Vk which

contains all the vertices of Ou. Here, instead of identifying the y, we choose to
apply all the vertices to Equ. 1. This enables us to avoid searching the y in⋃m

k=1 Vk, which significantly reduces computation time. More importantly, since
these vertices are distributed over the entire Ou, they encode more geometrical
information of this domain and hence are more representative than a single point
y which only captures its largest distance to the safe domain U . Therefore, we
substitute the dist function in Equ. 1 with a more general formulation:

dist :

m∑
k=1

|Vk|∑
j=1

min
ŷ∈U

∥yj(xj , θ)− ŷ∥l (3)

where |Vk| denotes the vertices set’s cardinality.
In the following, we present our approach of approximating the closest safe ŷ

to the unsafe y. Recall that the unsafe domain U defined in the safety property is
either a convex set formulated as Ax+ b ≤ 0 or a non-convex domain consisting
of multiple such convex sets. Therefore, the problem of finding ŷ can be encoded
as an LP problem of finding a ŷ on the boundaries of U such that the distance
between ŷ and the interior y is minimal, where the optimal ŷ is located on one
of its boundaries along its normal vector from y. Let the vector from y to ŷ
along the normal vector be denoted as ∆y. Then, the problem of finding ŷ can
be formulated as

ŷ = y+ (1 + α)∆y, min
ŷ/∈U

∥y− ŷ∥ (4)

where α is a very small positive scalar to divert ŷ from the boundary of U into
the safe domain.

Loss Function for the Minimal DNN Repair The minimal repair problem
is posed as a multi-objective optimization problem. In addition to the optimiza-
tion for the repair problem explained previously, the minimal change of the DNN
parameter θ is also considered in the problem formulation. For the minimization
of the change, one simple and promising approach is to apply the training data
in the retraining process of repair. Let the training input-output data be denoted
as X ×T , then the function for measuring parameter change can be formulated



Neural Network Repair with Reachability Analysis 7

Algorithm 1 DNN Repair

Input: N , {P}mi=1, (x,y)training ▷ an unsafe DNN, safety properties, training data
Output: N ′ ▷ an safe DNN satisfying all its safety properties.

1: procedure N ′ = Repair(N )
2: N ′ ← N
3: while N ′ is not safe on {P}mi=1 do
4: Dunsafe = reachAnalysis(N , {P}mi=1) ▷ compute unsafe data domains
5: Lu = Dist(Dunsafe) ▷ approximate the distance using Equ. 3.
6: Lc = Loss((x,y)training) ▷ compute loss on the training data in Equ. 5
7: N ′ = Update(N ′, Lu, Lc) ▷ learn through the loss function in Equ. 6

as

Lc(θ) =

N∑
i=1

∥yi(xi, θ)− ti∥l (5)

where (x, t) ∈ X ×T . Here, we combine the function Lu for repair in Equ. 3 and
the function Lc in Equ. 5 into one composite loss function using the weighted
sum, and the minimal repair process can be formulated as

minimize
θ

(
α · Lu(θ) + β · Lc(θ)

)
(6)

where α, β ∈ [0, 1] and α+ β = 1. The configuration α = 1, β = 0 indicates only
the repair process, while α = 0, β = 1 indicates the process does not include the
repair but only the minimization of the parameter change.

The process of the DNN repair is described in Algorithm 1. Given an unsafe
DNN candidate, in each iteration, its unsafe domain over safety properties are
first computed. With the unsafe domain, the distance in Equ. 3 is then computed.
Finally, together with the loss value on the training data, the total loss value in
Equ. 6 is computed and used to updated the DNN parameters. The algorithm
terminates when the DNN is verified safe or the maximum number of iterations
is reached.

3.2 Repair for Deep Reinforcement Learning

DRL is a machine learning technique where a DNN agent learns in an interac-
tive environment from its own experience. Our method aims to repair an agent
which violates its safety properties while performance is maintained as defined
in Problem 3. In each time step of DRL, the agent computes the action and the
next state based on the current state. A reward is assigned to the state tran-
sition. This transition is denoted as a tuple ⟨s, a, r, s′⟩ where s is the current
state, a is the action, s′ is the next state, and r is the reward. Then, this tuple
together with previous experience is used to update the agent. The sequence of
time steps from the beginning with an initial state to the end of the task is called
an episode. The DRL algorithm in this work considers one of the most popular
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algorithms, the deep deterministic policy gradients algorithm (DDPG) [7] and
is utilized on the rocket-lander benchmark 5 inspired by the lunar lander [1].

Our repair method for DRL is demonstrated in Fig. 2. Given an unsafe
agent candidate in Fig. 2(a), our reachability analysis method computes the
unsafe state domain that leads to an unsafe action by the agent. The vertices of
unsafe linear regions are selected as representative unsafe states for the unsafe
domain. Instead of minimizing its distance to the closest safe state as proposed
for the regular repair, we run one episode with the unsafe state as an initial
state as shown in Fig. 2(b). In this process, a penalty r is applied to the unsafe
action observed in the learning process, from which safety can be more naturally
learned. The penalty r is normally set to the least reward in the old experience,
where the old experience refers to the experience from learning the original unsafe
agent. In the repair process, the tuple in each time step will be stored into a global
buffer for previous experience, which is named new experiences. For training, a
set of tuples will be randomly selected from both experiences. The process in
Fig. 2(a) will be repeated until the agent becomes safe. The process is also
described in Algorithm 2.

DNN Agent <s,a,r,s’>

One time step with 
the environment 

Add

A Set of 
<s,a,r,s’>

Train

 Select

Agent 
Candidate

One Episode

Unsafe 
State Space

Reachability 
Analysis

Buffer of
Unsafe States

Run one episode 
with each unsafe 

state as initial state

Generate

Termination
Empty?

(a) (b)

New Experiences

Old Experiences

Fig. 2: Repair framework for deep reinforcement learning. In the loop (a), given
an agent, its unsafe state space is first computed with our reachability analysis
method. Then, episodes in (b) are run with unsafe states as initial states to
update the agent, where the occurrence of unsafe states will be penalized.

4 Experiments and Evaluation

In this section, we evaluate our repair methods with two benchmarks. One is
the DNN controllers for the Airborne Collision System X Unmanned (ACAS
Xu) [4]. Our repair method in Section 3.1 is evaluated against the work ART [8].
We also study the different performance between our non-minimal repair method
in Equ. 1 and our minimal repair in Equ. 5. To measure the impact of repair
algorithms on DNNs, besides the accuracy on finite test data, we also analyze the
changes of the DNN’s reachability. The other benchmark is a set of DNN agents

5 https://github.com/arex18/rocket-lander
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Algorithm 2 Repair for Deep Reinforcement Learning

Input: N , E, {P}mi=1 ▷ an unsafe DNN agent, its old experience, safety properties
Output: N ′ ▷ a safe agent satisfying all its safety properties

1: procedure N ′ = Repair(N )
2: N ′ ← N
3: while N ′ is not safe on {P}mi=1 do
4: Dunsafe = reachAnalysis(N , {P}mi=1) ▷ compute unsafe state domains
5: Sunsafe = Vertices(Dunsafe) ▷ representative unsafe states
6: for s in Sunsafe do
7: N ′ = Episode(N ′, s, E) ▷ one episode learning

for a rocket lander system based on the lunar lander [1]. With this benchmark,
we explore our repair method proposed in Section 3.2 to repair unsafe DNN
agents for DRL. The hardware for all experiments is Intel Core i9-10900K CPU
@3.7GHz×, 10-core Processor, 128GB Memory, 64-bit Ubuntu 18.04.

4.1 Repair of ACAS Xu Neural Network Controllers

The ACAS Xu DNN controllers consist of an array of 45 fully-connected ReLU
DNNs. They are used to approximate a large lookup table that converts sensor
measurements into maneuver advisories in an airborne collision avoidance sys-
tem, such that they can significantly reduce the massive memory usage and also
the lookup time. All DNNs have the same architecture which includes 5 inputs,
5 outputs and 6 hidden layers with each containing 50 ReLU neurons. The 5
inputs correspond to the sensor measurement of the relative dynamics between
the own ship and one intruder. The 5 outputs are prediction scores for 5 advi-
sory actions. There are 10 safety properties defined, and each neural network is
supposed to satisfy a subset of them.

Among these 45 network controllers, there are 35 unsafe networks violating
at least one of the safety properties. Some works [8, 5] report there are 36 unsafe
networks due to numerical rounding issues [16]. Since the original dataset is not
publicly available, we uniformly sample a set of 10k training data and 5k test
data from the state space of DNNs, the same strategy as ART [8]. To repair
these unsafe networks, our minimal repair and ART [8] require these datasets
while our non-minimal repair approach does not.

The parameter configurations for the retraining process of a DNN in our
repair are as follows. For non-minimal repair, the learning rate lr = 0.001. The
learning rate for our non-minimal repair normally needs to be small, because the
retraining of the DNN is only guided by the modification of unsafe behaviors
and a large value may also greatly affect other safe behaviors. For the minimal
repair, which is a multi-objective optimization problem, a set of configurations
are applied to estimate the optimal performance. Here, the learning rate lr and
the value (α, β) in Equ. 6 are set as below. There are 6 different settings for the
minimal repair of each unsafe network. The optimal result is selected for perfor-
mance comparison. The loss functions in Equ. 1 and 5 are computed with the
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Learning Rate (lr) (α, β)

Non-minimal Repair 0.001 -
Minimal Repair {0.01, 0.001} {(0.2,0.8),(0.5, 0.5),(0.8,0.2)}.

Euclidean norm. As introduced, each iteration of our repair consists of the reach-
ability analysis and epochs of retraining. Here, we empirically set the maximum
iteration to 100 and the number of epochs to 200 for all our repair methods. For
ART [8], their default settings are applied for the comparison.

Success and Accuracy The experimental results are shown in Table 1. Ta-
ble 1 describes the repair successes and the accuracy of repaired networks. Recall
that the test data are sampled from the original network, therefore, the accuracy
of the original network on these data is 100%. As shown, in terms of success,
our non-minimal repair and minimal repair methods both successfully repair all
35 unsafe networks. ART can repair 33 networks. While ART with refinement
which computes tighter approximation than ART can repair all of the networks.
In terms of accuracy, our repaired networks exhibit a higher accuracy than ART
and some of our repaired networks even have 100% accuracy, indicating less
performance degradation. We hypothesize that the difference of performance in
ART, as discussed in Section 1 is primarily due to the use of over-approximation
methods for the unsafe domains of DNNs. They may be so conservative that the
estimated distance in Equ. 1 is inaccurate, resulting in performance degrada-
tion. It can be also noticed that with the refinement in ART which computes a
tighter approximation of domains, the number of repair successes and their ac-
curacy increase. Overall, with the exact reachability analysis, our methods can
outperform ART in terms of accuracy.

Table 1: Repair of ACAS Xu neural network controllers.

Methods Repair Successes Min Accu. Mean Accu. Max Accu.

Art 33/35 88.74% 94.87% 99.92%
Art-refinement 35/35 90.38% 96.23% 99.92%

Our Non-minimal Repair 35/35 98.66% 99.74% 100.0%
Our Minimal Repair 35/35 99.38% 99.83% 100.0%

For our non-minimal repair and minimal repair methods, we can notice that
the accuracy difference of their repaired networks in Table 1 is trivial. Recall that
our minimal repair can have the Pareto optimality issue in its multi-objective
optimization in Equ. 6, while our non-minimal repair does not. It means that
in the minimal repair, the minimization of the DNN deviation may impede the
optimization for repair. By contrast, our non-minimal repair can consistently
repair all networks with one parameter setting and meanwhile maintain the
high accuracy without the usage of training data.
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Fig. 3: Accuracy evolution of models with respect to the number of repair iter-
ations. All models before the repair are unsafe on at least one safety property.
All repairs successfully generate safe models in the end.

DNN Deviation after Repair Additionally, the accuracy evolution of net-
works under repair is also demonstrated in Fig. 3. It includes ART with refine-
ment (a) and our non-minimal repair method (b). We can notice that at the
beginning of ART, the accuracy of the repaired DNN will first drop quickly and
in some instances, it even drops below 20%. Then, the accuracy gradually con-
verges to a higher value. We speculate that at the beginning of the repair, ART
mainly generates a safe model with a large modification of the original network
and then, train this safe network with the training data to improve the accuracy.

We also analyze the impact of repair on the reachability of DNNs. The reach-
ability refers to the output reachable domain of DNNs on the input domains I of
their safety properties. Here, we consider the network N21 which includes safety
properties 1,2,3,4. It violates Property 2 whose unsafe output domain is that y1

is the maximum. The output reachable domain of N21 has 5 dimensions, and it
is projected on two dimensions for visualization.

The output reachable domains of N21 on Properties 1 & 2, projected on
(y1,y3) and (y1,y5), are shown in Fig. 4. (a) represents the reachable domain of
the original unsafe N21. (b) and (c) represents the reachable domain of repaired
N21 by our method and ART, respectively. The blue area represents the safe
reachable domain, and the red area represents the unsafe reachable domain. We
can notice that the unsafe domain is successfully eliminated by our method and
ART. We can also notice that compared to ART, our method barely changes the
reachable domain. With respect to the original reachable domain, our reachable
domain on (y1,y5) exhibits a more obvious change than the one on (y1,y3). This
is because in the majority of safety violations, y5 is the second-largest output,
next to y1. Therefore, our repair modifies y5 the most to eliminate the unsafe
domain, which avoids large changes on other dimensions.

In addition, the reachability on Properties 3 & 4, projected on (y1,y5), is also
shown in Fig. 5. Similarly, we can notice that the impact of our repair method
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(a) The original (b) Our method (c) ART

Fig. 4: Reachability of repaired network N21 on Properties 1 & 2, projected on
dimensions (y1,y5) and (y1,y3). It shows the output reachable domains of the
original network and its repaired networks. The red area represents the unsafe
reachable domain, while the blue area represents the safe domain.

on the reachability of N21 is negligible, but ART changes the entire reachable
domain. It can justify that a slight deviation on the DNN parameter may cause
a tremendous change in its behaviors. It also shows that our DNN repair on one
property hardly affects the DNN performance on other properties.

Table 2: Running time (sec) of our repair method and ART

Methods Regular Cases (33 Nets) Hard Cases (2 Nets)
Min Mean Time Max Time (N19) Time (N29)

Art 66.5 71.4 100.3 65.6 71.5
Art-refinement 85.4 89.2 90.1 84.6 90.4
Our Method 7.4 65.5 230.1 7173.2 3634.9

The running time of our repair method and ART is shown in Table 2. Here,
we divide the repair of all 35 networks into regular cases and hard cases in
terms of the volume of input domain of their safety properties. Normally, a
larger input domain requires more computation for reachability analysis. The
regular cases include all 33 networks whose safety properties specify small input
domains. While the hard cases include the 2 networks N19 and N29 whose safety
properties 7 and 8 specify large input domains. It can be noticed that our method
is faster than ART in the regular cases but slower in the hard cases. That is
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(a) The original (b) Our method (c) ART

Fig. 5: Reachability of repaired network N21 on Properties 3 & 4, on which the
original network is safe. The domain is projected on dimensions (y1,y5). We
observe that due to the over approximation, ART repairs the network needlessly
and changes the reachable set of the network.

because that unlike the over-approximation method utilized by ART, the exact
reachability analysis of networks is an NP-complete problem [5]. When handling
hard cases, it becomes less efficient. Despite this undesired efficiency in the hard
cases, the exact analysis enables our method to repair all networks with much
less performance degradation than ART.

4.2 Rocket Lander Benchmark

The rocket lander benchmark 6 is based on the lunar lander [1]. It is a vertical
rocket landing model simulating SpaceX’s Falcon 9 first stage rocket. Unlike the
lunar lander whose action space is discrete, its action space is continuous, which
commonly exists in the practical applications. Besides the rocket, a barge is also
included on the sea which moves horizontally, and its dynamics are monitored.
The rocket includes one main engine thruster at the bottom with an actuated
joint and also two other side nitrogen thrusters attached to the sides of the top
by unactuated joints. The main engine has a power FE ranging in [0, 1] and its
angle relative to the rocket body is φ. The power FS of the side thrusters ranges
in [−1, 1], where −1 indicates that the right thruster has full throttle and the left
thruster is turned off, while 1 indicates the opposite. The rocket landing starts
in certain height. Its goal is to land on the center of the barge without falling or
crashing by controlling its velocity and lateral angle θ through the thrusters.

There are three actions, the main engine thruster FE , its angle φ and the
side nitrogen thrusters FS . The observation contains the position x and y of
the rocket relative to the barge, the velocity vx and vy of the rocket, its lateral
angle θ, its angular velocity ω, and also last action advisory. It can be denoted
as [x, y, vx, vy, θ, ω, F

′
E , φ

′, F ′
S ]. Two safety properties are defined as below.

6 https://github.com/arex18/rocket-lander.git
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1. Property 1 : for the state constraints −20◦ ≤ θ ≤ −6◦, ω < 0, φ′ ≤ 0◦ and
F ′
S ≤ 0 , the desired action should be φ < 0 or FS < 0, which prevents the

rocket from tilting to the right in this state domain.
2. Property 2 : for the state constraints 6◦ ≤ θ ≤ 20◦, ω ≥ 0, φ′ ≥ 0◦ and

F ′
S ≥ 0, the desired action should be φ > 0 or FS > 0, which prevents the

rocket from tilting to the left in this state domain.

The reinforcement learning algorithm Deep Deterministic Policy Gradients
(DDPG) [7] is applied on this benchmark, which combines the Q-learning with
Policy gradients. This algorithm is used for the environments with continuous
action spaces. It consists of two models: Actor, a policy network that takes
the state as input and outputs exact continuous actions, and Critic, a Q-value
network that takes state and action as input and outputs Q-values. The Actor
is our target agent controller. Here, among well-trained agents with DDPG, we
first identify unsafe agents that violate these properties. Then, we apply our
method to repair these agents. The Actor is designed with 9 inputs for state, 5
hidden layers with each containing 20 ReLU neurons, 3 outputs with subsequent
tanh function.

Three unsafe agent controllers are learned. For the repair process, the learning
rate for Actor and Critic is set to 10−4 and 10−3 respectively. The old experience
from the learning process and the new experience from the current repair process
are randomly selected for the learning, as shown in Fig. 2(b). A penalty reward
is added for any wrong actions generated from input states. Its value is set to
the lowest reward in the old experience. The change of performance is evaluated
by R = (r′ − r)/r where r′ and r are the averaged reward of the repaired agent
and the original agent tested on 1000 episodes.

Table 3: Repair of unsafe agents for the rocket lander. ID is the index of each
repair. R denotes the performance change ratio of the repaired agent compared
to the original unsafe agent. Iter denotes the number of iterations for repair.
Time (sec) denotes the running time for one repair with our method.

Agent 1 Agent 2 Agent 3
ID R Iter Time R Iter Time R Iter Time

1 +0.063 3 332.7 +0.048 3 635.7 +0.053 2 446.1
2 +0.088 3 302.0 +0.012 6 1308.4 +0.085 3 1451.6
3 +0.079 3 447.9 -0.084 4 812.9 -0.033 3 2417.1
4 +0.078 3 884.2 +0.025 3 620.3 +0.073 2 1395.3
5 +0.085 3 754.3 -0.001 4 813.5 -0.165 5 2632.9

For each unsafe agent, we conduct repair 5 times with each repair aiming to
obtain a safe agent. There are totally 15 instances. The experimental results are
shown in Table 3, which describe the performance change ratio R, the iterations
of repair and the total time. We note that our framework can successfully repair
the 3 agents in all 15 instances. In most cases, the performance of the repaired
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agent is slightly improved. The performance degradation in other instances is
also trivial. The repair process takes 2-6 iterations for all instances with the
running time ranging from 332.7 seconds to 2632.9 seconds. The evolution of the
reachability of repaired network is also shown in Fig. 6. It shows that our repair
only slightly affects the reachable domain of the agent.

1st Iteration 2nd Iteration 3rd Iteration

Fig. 6: The evolution of the output reachable domain on Property 1&2 in the
repair of Agent 1 on ID 1. The domain is projected on (y2,y3). The blue area
represents the exact output reachable domain while the red area represents the
unsafe reachable domain.

5 Conclusion and Future Work

We have presented methods to repair unsafe DNN controllers for autonomous
systems. our method can be utilized to repair unsafe DNNs, even without train-
ing data. It can also be integrated into existing reinforcement algorithms to syn-
thesize safe DNN controllers. Our experimental results on two practical bench-
marks have shown that our method can successfully obtain a provably safe DNN
while maintaining its accuracy and performance.
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